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Abstract

In this study, 3D analytical solutions of stress profiles are obtained for the fibers adjacent to a broken fiber in

unidirectional composites with interfacial slip and matrix yielding. To this end, a hexagonal fiber-array model con-

taining a broken fiber is considered in order to derive differential equations based on a shear lag model. By assuming a

bilinear stress profile for the broken fiber, and by introducing an elastoplastic shear modulus of the matrix, it is shown

that all relevant material parameters are consolidated into a nondimensional characteristic length. The governing

differential equations are then analytically solved under the condition that uniform axial deformation prevails in the

second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions are verified by numerically

solving the governing equations more generally using a finite difference method. The analytical solutions are, moreover,

compared with the detailed 3D finite element computations reported recently, leading to the validity of the present

solutions and the effectiveness of the nondimensional characteristic length.

� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The longitudinal tensile failure of unidirectionally reinforced metal–matrix and polymer–matrix fiber

composites is complex. Initially all fibers are supposed to be intact, although they are brittle. With the

increase of tensile loads, fiber breaks can occur to cause stress concentrations in the adjacent fibers. The

stress concentrations, then, may trigger the progressive failure of fibers, resulting in the final rupture of

composites. The stress concentrations are affected by many factors such as the spacing of fibers, the
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characteristic of fiber/matrix interface, the yielding of matrix, the fiber to matrix ratio of elastic moduli, and

so on. It is, therefore, important to evaluate the effects of these factors on the stress concentrations around

fiber breaks in unidirectional fiber composites.

The shear lag concept introduced by Cox (1952) has been often employed to analyze the stress con-
centrations in unidirectional fiber composites. Such a study was first done by Hedgepeth (1961). He derived

a 2D solution by applying the Fourier transformation to the governing equations of elastic lamina com-

posites with the perfect bonding at fiber/matrix interface. His solution was extended to 3D elastic com-

posites with square and hexagonal fiber arrays by Hedgepeth and Van Dyke (1967). While the 2D solution

by Hedgepeth was shown to be in good agreement with continuum elasticity solutions (Beyerlein et al.,

1996), the 3D solution by HVD was found to overestimate the stress concentrations of finite element

analysis (Nedele and Wisnom, 1994a,b). Landis et al. (1999) improved the HVD model by formulating a

shear lag model based on assumptions consistent with the principle of virtual work and the method of finite
element analysis. Shear lag models have been also used to numerically simulate the progressive failure of

fibers in unidirectional composites (Landis et al., 2000; Okabe et al., 2001, 2002; Ochiai et al., 2003; Goda,

2003).

The HVD model mentioned above is an excellent 3D solving method based on the Fourier transfor-

mation in the space of fiber displacements, though a double integral must be performed numerically. The

HVD model, however, needs to be fairly sophisticated to take into account the slip at fiber/matrix interface

around fiber breaks (Landis and McMeeking, 1999). For polymer–matrix and metal–matrix fiber com-

posites, the slip at fiber/matrix interface usually occurs more significantly at higher applied loads. Matrix
yielding also becomes significant with the increase in applied loads. It is, therefore, worthwhile to develop

new analytical solutions which enable us to simply evaluate the stress concentrations around fiber breaks in

the presence of interfacial slip and matrix yielding.

In the last decade, 2D and 3D finite element computations have been done in several studies to analyze

the stress concentrations caused by a fiber break (Du and McMeeking, 1993; Nedele and Wisnom, 1994a,b;

Goda, 1999; Gonz�alez and Llorca, 2001; Xia et al., 2001, 2002). Finite element computations in general

allow us to correctly evaluate the stress concentrations, though they are numerical. Recently, both inter-

facial slip and matrix yielding were minutely taken into account in 3D detailed finite element computations
by Gonz�alez and Llorca (2001) and Xia et al. (2001). Such detailed computations can be useful as references

in developing new analytical solutions.

In this paper, by taking account of the slip at fiber/matrix interface as well as the yielding of matrix, 3D

analytical solutions of stress profiles will be derived for the fibers adjacent to a broken fiber. For this

purpose, a shear lag model will be built by supposing the hexagonally arrayed elastic fibers, with an initial

break, embedded in the elastoplastic matrix with a secant shear modulus. The broken fiber will be assumed

to have a bilinear profile of axial normal stress due to the interfacial slip, and the secant shear modulus of

matrix will be represented by assuming the deformation theory of plasticity. Then, after showing that all
material parameters in the basic equations are consolidated into a nondimensional characteristic length,

analytical solutions will be obtained under the condition that uniform axial deformation prevails in the

second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions will be verified

by numerically solving the governing equations more generally using a finite difference method, and by

employing the results of the detailed 3D finite element analysis of Gonz�alez and Llorca (2001) and Xia et al.

(2001).
2. Shear lag model

In this section, a shear lag model is developed to analyze the fiber stress profiles around a fiber break in a
unidirectional composite subject to longitudinal tensile loading. We suppose that elastic fibers with a break
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Fig. 1. Hexagonally arrayed fibers with a broken fiber labeled i ¼ 0.
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are hexagonally arrayed and embedded in an elastoplastic matrix, and that slip occurs at the fiber/matrix

interface near the break.

Let the fibers be labeled i ¼ 0; 1; 2; . . . so as to form concentric hexagons with the broken fiber located at

the center (Fig. 1). Let us assume that all fibers belonging to the ith hexagon, i.e., the ith nearest-neighbor

fibers, are identically deformed in the axial direction (Nedele and Wisnom, 1994a), and that the fibers,

which have Young’s modulus Ef , have an initial residual stress rfr in the axial direction. The shear lag

concept then gives
dui
dz

¼ ri � rfr

Ef

; i ¼ 0; 1; 2; . . . ; ð1Þ
where ui and ri denote, respectively, the axial displacement and axial normal stress of the ith nearest-

neighbor fibers, and z indicates the axial coordinate with its origin at the fiber break. We further assume

that the fibers have a hexagonal cross section of side length af and area Af , as shown in Fig. 2 (Suemasu,

1984). Fiber spacing s is then expressed in terms of fiber volume fraction f as follows:
s ¼
ffiffiffi
3

p
f �1=2
�

� 1
�
af : ð2Þ
Let us ignore the axial normal stress in matrix in conformity with the standard shear lag concept, though

it was taken into account by Ochiai et al. (1991) and Landis and McMeeking (1999). This allows us to

assume that the opposed surfaces of the ith and iþ 1th nearest-neighbor fibers, which have been regarded
as the hexagonal bars, have the same magnitude of shear stress, which will be denoted as si=iþ1. The broken
Fig. 2. Approximation of fibers by hexagonal bars of cross sectional area Af and side length af .
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fiber and the ith nearest-neighbor fibers then have the following equilibrium equations of forces, respec-

tively:
Af

dr0

dz
þ 6afs0=1 ¼ 0; ð3Þ

iAf

dri

dz
� 2ið � 1Þafsi�1=i þ 2ið þ 1Þafsi=iþ1 ¼ 0; i ¼ 1; 2; 3; . . . ð4Þ
Here it is noted that the ith nearest-neighbor fibers consist of 6i fibers and have, in total, 6ð2i� 1Þ and
6ð2iþ 1Þ faces on which si�1=i and si=iþ1 act, respectively.

When the shear stress acting on the broken fiber, s0=1, reaches interfacial slip stress ss in the vicinity of the

fiber break, the broken fiber has the axial stress profile r0ðzÞ illustrated in Fig. 3. Let us bilinearly

approximate it, as shown by the dashed line in the figure. Then, r0ðzÞ and s0=1ðzÞ have expressions
r0ðzÞ ¼
r1
f z=l; 06 z6 l;

r1
f ; l6 z;

�
ð5Þ

s0=1ðzÞ ¼
�ss; 06 z6 l;
0; l6 z;

�
ð6Þ
where r1
f indicates the far field fiber stress related with applied strain e1,
r1
f ¼ Efe

1 þ rfr; ð7Þ
and l denotes the so-called stress recovery length. By use of Eqs. (3), (5) and (6), l is expressed as
l ¼ Afr1
f

6afss
: ð8Þ
Matrix shear cannot be significant outside the first nearest-neighbor fibers, since jsi=iþ1j6 ss=ð2iþ 1Þ
according to Eqs. (4) and (6). For si=iþ1 ði ¼ 1; 2; 3; . . .Þ, therefore, we can assume the following equation

based on the perfect bonding at fiber/matrix interface:
si=iþ1 ¼
G	

m

s
uiþ1ð � uiÞ; i ¼ 1; 2; 3; . . . ; ð9Þ
where G	
m indicates an elastoplastic secant shear modulus of matrix. If the fiber break initially exists, the

deformation in matrix cannot be extremely nonproportional even near the fiber break, so that the J2
deformation theory is applicable to matrix plasticity. Then, on the assumption that applied strain e1 in-

duces considerable plastic strain in the matrix, G	
m can be represented as follows (see Appendix A):
0 l z

0σ

fσ ∞
Approximation

Fig. 3. Bilinear approximation of the stress profile of broken fiber.
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G	
m 
 1

Gm

�
þ
3e1mp

r1
m

��1

; ð10Þ
where Gm indicates the elastic shear rigidity of matrix, and r1
m and e1mp signify the far field axial stress and

axial plastic strain in matrix, respectively.

Let us introduce nondimensional stresses
Ri ¼
ri

r1
f

; Ti=iþ1 ¼
si=iþ1

r1
f

: ð11Þ
Then, eliminating si�1=i and si=iþ1 in Eq. (4) by use of Eqs. (3) and (9), differentiating the resulting equation

with respect to z, and subsequently substituting Eq. (1), we have
R00
1 þ 3R2 � 3R1 þ 1

6
R00

0 ¼ 0; ð12Þ

R00
i þ

2iþ 1

i
Riþ1 � 4Ri þ

2i� 1

i
Ri�1 ¼ 0; i ¼ 2; 3; 4; . . . ð13Þ
Here, ð Þ0 indicates the differentiation with respect to a nondimensional axial coordinate
Z ¼ z
K
; ð14Þ
where
K ¼ EfAfs
G	

maf

� �1=2

: ð15Þ
Eqs. (12) and (13), which we will solve analytically in Section 3, are the differential equations on fiber
stresses rather than fiber displacements in contrast to the HVD model. Here it is noted that bilinear

approximation (5) prescribes the following expression for R0, which is regarded as a given input in solving

Eqs. (12) and (13) for RiðZÞ, i ¼ 1; 2; 3; . . .:
R0ðZÞ ¼
Z=L; 06 Z6 L;
1; L6 Z;

�
ð16Þ
where L is the nondimensional stress recovery length, i.e.,
L ¼ l
K
: ð17Þ
Substituting Eqs. (8) and (15) into Eq. (17), and using Eq. (2) as well as Af=a2f ¼ 3
ffiffiffi
3

p
=2, we can show that
L ¼ G	
m

24Efðf �1=2 � 1Þ

� �1=2 r1
f

ss
: ð18Þ
The boundary conditions to solve Eqs. (12) and (13) for Ri at Z P 0, i ¼ 1; 2; 3; . . ., can be written as
lim
Z!1

RiðZÞ ¼ 1; i ¼ 1; 2; 3; . . . ; ð19Þ

Ti=iþ1ð0Þ ¼ 0; i ¼ 1; 2; 3; . . . ð20Þ
Since Eq. (4) is rewritten as
Ti=iþ1 ¼ � i
2iþ 1

Af

afK
R0

i þ
2i� 1

2iþ 1
Ti�1=i; i ¼ 1; 2; 3; . . . ; ð21Þ
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the second boundary condition, Eq. (20), is shown to take the following form by use of Eqs. (6), (8), (11)2
and (17):
R0
1ð0Þ ¼ � 1

6L
; R0

ið0Þ ¼ 0; i ¼ 2; 3; 4; . . . ð22Þ
Here it is noted that R0
1ð0Þ 6¼ 0 because s0=1ð0Þ 6¼ 0 in shear lag modeling.

It is seen from Eqs. (12), (13), (19) and (22) that all related material parameters are consolidated into L;
in other words, L represents the entire influence of material parameters in the shear lag model developed

above. We, therefore, can call L the nondimensional characteristic length or, simply, the characteristic

length.
3. Analytical solutions

If the N th nearest-neighbor fibers constitute an outmost periphery subject to uniform axial deformation,

we have RN ¼ 1. Now, applying this condition to the second and third nearest-neighbor fibers, respectively,

we derive two analytical solutions, referred to as Solutions I and II.

3.1. Solution I

Let us suppose that the second nearest-neighbor fibers are subject to uniform axial deformation. Then,

since
R2 ¼ 1; ð23Þ

Eq. (12) with R0ðZÞ approximated bilinearly as Eq. (16) is reduced to
R00
1 � 3R1 þ 3 ¼ 0: ð24Þ
We notice that because of Eq. (16), not only R0
0 but also R0

1 has a discontinuity at Z ¼ L. Hence, let Rin
1 ðZÞ

and Rout
1 ðZÞ indicate R1ðZÞ in the intervals of 06 Z6 L and L6 Z, respectively. Then, a general solution of

Eq. (24) is written as
Rin
1 ðZÞ ¼ 1þ C1e

ffiffi
3

p
Z þ C2e

�
ffiffi
3

p
Z ; 06 Z6 L; ð25aÞ

Rout
1 ðZÞ ¼ 1þ C3e

ffiffi
3

p
Z þ C4e

�
ffiffi
3

p
Z ; L6 Z; ð25bÞ
where C1, C2, C3 and C4 are integration constants. These constants can be determined using the boundary

conditions (19) and (22)1 as well as the continuity conditions of R1 and T1=2 at Z ¼ L,
Rout
1 ð1Þ ¼ 1; Rin0

1 ð0Þ ¼ � 1

6L
; Rin

1 ðLÞ ¼ Rout
1 ðLÞ; T in

1=2ðLÞ ¼ T out
1=2 ðLÞ: ð26Þ
By using Eq. (21) along with Eqs. (6), (8), (11)2 and (17), the last condition above is rewritten as
Rin0

1 ðLÞ þ 1

6L
¼ Rout0

1 ðLÞ: ð27Þ
The constants are thus determined as
C1 ¼
�e�

ffiffi
3

p
L

12
ffiffiffi
3

p
L
; C2 ¼

2� e�
ffiffi
3

p
L

12
ffiffiffi
3

p
L

; C3 ¼ 0; C4 ¼
2� e

ffiffi
3

p
L � e�

ffiffi
3

p
L

12
ffiffiffi
3

p
L

: ð28Þ
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Consequently, Solution I provides the stress concentration factor, SCF, and the positively affected

length, PAL, of the first nearest-neighbor fibers with analytical evaluations:
SCF ¼ 1� e�
ffiffi
3

p
L

6
ffiffiffi
3

p
L

; ð29Þ

PAL

K
¼ lnð2e

ffiffi
3

p
L � 1Þ

2
ffiffiffi
3

p : ð30Þ
It is seen from Eq. (29) that the SCF takes the maximum and minimum values of 1/6 and 0, as L ! 0 and

L ! 1, respectively. Thus, we can say that the SCF is higher, when the nondimensional stress recovery

length L is shorter.
3.2. Solution II

If the third nearest-neighbor fibers are supposed to be subject to uniform axial deformation,
R3 ¼ 1: ð31Þ
Eqs. (12) and (13), into which Eq. (16) is substituted, are then reduced to
R00
1 þ 3R2 � 3R1 ¼ 0; ð32Þ

R00
2 � 4R2 þ 3

2
R1 þ 5

2
¼ 0: ð33Þ
Eqs. (32) and (33) are the simultaneous equations to determine R1ðZÞ and R2ðZÞ. It is seen that they have

a particular solution
R1ðZÞ ¼ R2ðZÞ ¼ 1 ð34Þ

and homogeneous equations
R00
1 � 3R1 þ 3R2 ¼ 0; ð35Þ

3
2
R1 þ R00

2 � 4R2 ¼ 0: ð36Þ
Eqs. (32) and (33), therefore, have the following general solution, in which the interval is divided into

06 Z6 L and L6Z as in Solution I:
Rin
1 ðZÞ ¼ 1þ

X4
n¼1

Dne
knZ ; 06 Z6 L; ð37aÞ

Rout
1 ðZÞ ¼ 1þ

X4
n¼1

D4þne
knZ ; L6 Z; ð37bÞ

Rin
2 ðZÞ ¼ 1þ

X4
n¼1

Dnjne
knZ ; 06Z6 L; ð38aÞ

Rout
2 ðZÞ ¼ 1þ

X4
n¼1

D4þnjne
knZ ; L6Z; ð38bÞ
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where D1;D2; . . . and D8 are integration constants, and kn and jn (n ¼ 1; 2; 3; 4) are obtained from the

characteristic equation of Eqs. (35) and (36) as follows:
k1

k2



¼ � 7�

ffiffiffiffiffi
19

p

2

 !1=2

;
k3

k4



¼ � 7þ

ffiffiffiffiffi
19

p

2

 !1=2

; ð39Þ

jn ¼
3� k2

n

3
; n ¼ 1; 2; 3; 4: ð40Þ
The constants D1;D2; . . . and D8 can be determined using the boundary conditions (19) and (22) as well
as the continuity conditions of Ri and Ti=iþ1; i ¼ 1; 2; at Z ¼ L,
Rout
1 ð1Þ ¼ 1; Rout

2 ð1Þ ¼ 1; Rin0

1 ð0Þ ¼ � 1

6L
; Rin0

2 ð0Þ ¼ 0;

Rin
1 ðLÞ ¼ Rout

1 ðLÞ; Rin
2 ðLÞ ¼ Rout

2 ðLÞ; T in
1=2ðLÞ ¼ T out

1=2 ðLÞ; T in
2=3ðLÞ ¼ T out

2=3 ðLÞ; ð41Þ
where the last two conditions become Eq. (27) and Rin0

2 ðLÞ ¼ Rout0

2 ðLÞ, respectively, because of Eq. (21).

Then, applying the above conditions to Eqs. (37a)–(38b), we have a system of equations by which D1;D2; . . .
and D8 are determined, with the help of a manipulation software Mathematica, as follows:
D1 ¼
j3e

�k1L

12 j1 � j3ð Þk1L
; D2 ¼

�j3 2� e�k1Lð Þ
12 j1 � j3ð Þk1L

;

D3 ¼
�j1e

�k3L

12 j1 � j3ð Þk3L
; D4 ¼

j1 2� e�k3Lð Þ
12 j1 � j3ð Þk3L

;

D5 ¼ 0; D6 ¼
�j3 2� ek1L � e�k1Lð Þ

12 j1 � j3ð Þk1L
;

D7 ¼ 0; D8 ¼
j1 2� ek3L � e�k3Lð Þ
12 j1 � j3ð Þk3L

:

ð42Þ
According to Solution II, therefore, the first nearest-neighbor fibers have
SCF ¼ j1k1 1� e�k3Lð Þ � j3k3 1� e�k1Lð Þ
6 j1 � j3ð Þk1k3L

: ð43Þ
This SCF also takes the maximum and minimum values of 1/6 and 0, as L ! 0 and L ! 1 respectively.

The PAL by Solution II is evaluated by numerically solving Rin
1 ðZÞ ¼ 1.
4. Discussion

Solutions I and II have been obtained by analytically solving Eqs. (12) and (13) under the condition that

uniform axial deformation prevails in the second and third nearest-neighbor fibers, respectively. In this
section, first, the validity of this condition is discussed by numerically solving Eqs. (12) and (13) more

generally; subsequently, Solutions I and II are compared with the detailed 3D finite element computations

done by Gonz�alez and Llorca (2001) and Xia et al. (2001).

4.1. Comparison with finite difference analysis

Discretizing Eqs. (12) and (13) by use of a finite difference method, we have numerically analyzed the
fiber stress profiles more generally than in Solutions I and II (see Appendix B). The distribution of SCFs
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shown in Fig. 4 has been thus obtained on the assumption that uniform axial deformation prevails in the

fifth nearest-neighbor fibers. The nondimensional characteristic length L, which represents the entire

influence of material parameters, has been changed in this finite difference analysis, so that in the figure, the

SCF of the first nearest-neighbor fibers ranges from zero, the minimum, to 1/6, the maximum. It is seen
from Fig. 4 that the fourth nearest-neighbor fibers always have almost zero SCFs, and that the second and

third nearest-neighbor fibers have SCFs less than 0.015 and 0.005, respectively. This shows the validity of

the assumption used in Solution II that the third nearest-neighbor fibers are subject to uniform axial

deformation.

Fig. 5(a) and (b) compare the two analytical solutions and the finite difference analysis mentioned above

with respect to the SCF and PAL of the first nearest-neighbor fibers. As seen from the figures, Solutions I

and II give nearly the same SCFs and PALs as the finite difference analysis; especially, the SCF and PAL by

Solution II are very close to those by the finite difference analysis. Verification is, thus, made for Solutions I
and II so that they can be useful analytical solutions based on the shear lag model described in Section 2.
4.2. Comparison with finite element analysis

Gonz�alez and Llorca (2001) performed 3D finite element analysis to analyze the stress profiles of the

fibers adjacent to a broken fiber in a unidirectional composite Ti–6Al–4V/SiC. In their analysis, elastic

fibers were hexagonally arrayed in an elastic–perfectly plastic matrix, and Coulomb’s friction law was

assumed to allow the interfacial slip near the fiber break. Let us discuss Solutions I and II in the light of

their finite element analysis. The material parameters necessary for applying Solutions I and II to their finite

element analysis have been taken from their paper (Table 1). We thus have L ¼ 2:5 using Eqs. (10) and (18)
with e1mp ¼ e1 � ðr1

m � rmrÞ=Em. The axial profiles of r1 by Solutions I and II with L ¼ 2:5 are compared

with that of the finite element analysis in Fig. 6, where R denotes the radius of fibers. It is seen from the

figure that Solutions II has good agreement with the finite element analysis in the positively affected

interval, 06 z6PAL, while Solution I gives lower stress in this interval. Thus, the 3D finite element analysis

verifies Solution II.

Solutions I and II have singular points at z=R ¼ 16:5 (Fig. 6), which are due to the bilinear approxi-

mation of r0ðzÞ shown in Fig. 7. In order to examine the influence of the bilinear approximation, the axial

profile of r0 determined by the finite element analysis has been input into Eqs. (12) and (13) for performing
another finite difference computation. This computation, for which we have assumed R3 ¼ 1 as in Solution
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Table 1

Data for comparison with finite element analysis of Gonz�alez and Llorca (2001) and Xia et al. (2001)

Gonz�alez–Llorca Xia et al.

Applied strain, e1 (%) 1.00 0.94

Fiber volume fraction, f 0.35 0.4

Young’s modulus of fibers, Ef (GPa) 330 400

Young’s modulus of matrix, Em (GPa) 110 115

Poisson’s ratio of matrix, mm 0.33 0.3

Residual stress of fibers, rfr (MPa) )876 )540
Residual stress of matrix, rmr (MPa) 471 360

Interfacial slip stress, ss (MPa) 70 58 (l ¼ 0:25)

120 (l ¼ 0:5)

193 (l ¼ 0:9)

Far field fiber stress, r1
f (MPa) 2420 3200

Far field matrix stress, r1
m (MPa) 1130 1000
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II, has resulted in the profile of r1 depicted by a chain line in Fig. 6. The bilinear approximation is seen to
exert little influence on the profile of r1 in the interval of 06 z6PAL.

Now, we use the results of 3D finite element analysis reported by Xia et al. (2001). They assumed three

values of Coulomb’s friction coefficient l in order to study in detail the effect of interfacial slip near a fiber
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break in a unidirectional composite IMI-834 Ti/SCS-6 SiC, which was modeled by hexagonally arrayed

elastic fibers and an elastoplastic matrix with strain hardening. For their analysis, L is evaluated to be

L ¼ 4:0, 1.9 and 1.2 in the three cases of l ¼ 0:25, 0.5 and 0.9, respectively, by use of the data given in Table
1. The SCFs and PALs determined by Xia et al. are plotted as a function of L in Fig. 8(a) and (b),

respectively, to compare their computations with Solutions I and II. The results of Gonz�alez and Llorca are

also plotted in the figures. It is seen that Solutions I and II have fairly good agreement with the 3D finite

element computations. We, therefore, can say that Solutions I and II are effective for estimating the SCF

and PAL of the first nearest-neighbor fibers.

Let us discuss the effects of interfacial slip and matrix yielding by means of the nondimensional char-

acteristic length L. Since L is inversely proportional to ss in Eq. (18), L ranges widely in the three cases of

l ¼ 0:25, 0.5 and 0.9, as seen in Fig. 8. Consequently, interfacial slip significantly influences the SCFs near a
fiber break. The effect of matrix yielding can be examined by disregarding e1pm in evaluating L. If e1pm is

ignored, G	
m becomes equal to Gm, as seen from Eq. (10). Then, since L /

ffiffiffiffiffiffiffi
G	

m

p
in Eq. (18), and since

Gm > G	
m, L is overestimated, resulting in underestimating the SCFs. Thus, the nondimensional charac-

teristic length L, which is represented as Eq. (18), is useful for discussing the effects of interfacial slip and

matrix yielding.
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A fiber break was engendered not before but after applying tensile strain e1 in the finite element analysis

of Gonz�alez and Llorca (2001). Such a fiber break causes matrix shear to follow tensile strain, so that

nonproportional deformation occurs in the matrix around the break. This matrix shear can be nearly

elastic, since the development of matrix shear stress is limited by interfacial slip stress ss, and since ss is
usually much smaller than the yield stress of matrix. Nearly elastic behavior in the shear following tensile

strain was observed in combined tension–torsion experiments, for example, by Ohashi et al. (1981). For the

fiber break introduced after applying tensile strain, therefore, it may be appropriate to assume Eq. (9) with

G	
m replaced by Gm, leading to
L ¼ Gm

24Efðf �1=2 � 1Þ

� �1=2 r1
f

ss
: ð44Þ
Their finite element analysis then has L ¼ 3:0 instead of L ¼ 2:5. This change in L, however, induces only a
little decrease in the SCF (see Fig. 8), so that the profiles of r1 by Solutions I and II in Fig. 6 remain valid.
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Incidentally, the discussion above suggests that the SCF near a fiber break induced after tensile loading

is likely to be lower than that near an initially existing fiber break. This tendency was found to be noticeable

in the 3D detailed finite element analysis of an aluminum–matrix composite with the perfect bonding at

fiber/matrix interface (Xia et al., 2002).
5. Concluding remarks

This study was concerned with 3D analytical evaluations of the stress concentrations near a fiber break

in unidirectional composites with interfacial slip and matrix yielding. First, a shear lag model was devel-

oped by considering hexagonally arrayed elastic fibers with an initial break in an elastoplastic matrix. The

broken fiber was assumed to have a bilinear stress profile due to interfacial slip, and the matrix to have a

secant shear modulus to take matrix yielding into account. It was, thus, shown that all relevant material

parameters are consolidated into a nondimensional characteristic length. Then, the governing differential

equations were analytically solved under the condition that uniform axial deformation prevails in the
second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions, Solutions I

and II, were examined by numerically solving the differential equations more generally as well as by using

the results of detailed 3D finite element analysis reported recently. It was thus found that especially

Solution II has good agreement with these numerical results, and that the nondimensional characteristic

length is effective for evaluating the stress concentrations affected by interfacial slip and matrix yielding.

Let us emphasize the following: In this study, we dealt with the differential equations on fiber stresses

rather than fiber displacements in contrast to the HVD model. In the presence of interfacial sliding, then,

the bilinearly approximated stress profile of the broken fiber functioned as a given input to determining the
stress profiles of adjacent fibers. We thus derived Solutions I and II as well as the nondimensional char-

acteristic length. It will be subjects in our future studies to apply Solutions I and II to estimating the stress

concentrations near multiple fiber breaks and to predicting the tensile strength of composites.

The radial variation of matrix shear stress around a fiber break, which was not considered in this study,

is not negligible if fiber volume fraction is considerably small (Clyne and Withers, 1993; Xia et al., 2002). It

will be also a subject in our future studies to extend Solutions I and II by taking account of the radial

variation of matrix shear stress.
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Appendix A. Elastoplastic secant shear modulus of matrix

The J2 deformation theory allows matrix tensile and shear strains, em and cm, to be related with matrix

tensile and shear stresses, rm and sm, as follows:
em ¼ 1

Em

 
þ �emp

�rm

!
rm; cm ¼ 1

Gm

 
þ 3�emp

�rm

!
sm; ðA:1Þ
where Em and Gm indicates the tensile and shear rigidities of matrix, and �rm and �emp denote equivalent
matrix stress and equivalent matrix plastic strain, respectively. Since cm 
 ðuiþ1 � uiÞ=s, Eq. (A.1)2 provides

the secant modulus in Eq. (9), G	
m, with an expression
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G	
m 
 1

Gm

 
þ 3�emp

�rm

!�1

: ðA:2Þ
Let us remember that matrix shear cannot be significant outside the first nearest-neighbor fibers, and that
G	

m applies to such shear. Then, on the assumption that applied loads induce considerable axial stress and

axial plastic strain in the matrix, we may have �rm ¼ ðr2
m þ 3s2mÞ

1=2 
 r1
m and �emp ¼ ðe2mp þ c2mp=3Þ

1=2 
 e1mp

outside the first nearest-neighbor fibers, so that G	
m becomes
G	
m 
 1

Gm

�
þ
3e1mp

r1
m

��1

; ðA:3Þ
where r1
m and e1mp signify the axial normal stress and axial plastic strain in the far field matrix, respectively.

Appendix B. Finite difference method

In order to solve Eqs. (12) and (13) more generally than Solutions I and II, we employed the central finite
difference approximation of R00

i ,
R00
i;k 


Ri;k�1 � 2Ri;k þ Ri;kþ1

ðDZÞ2
; k ¼ 0; 1; 2; . . . ;K1 � 1; ðB:1Þ
where Ri;k ðk ¼ �1; 0; 1; . . . ;KL; . . . ;K1Þ indicates the value of Ri at the kth point in the interval 06 Z6 Z1
divided equally into K1 segments with a length of DZ ¼ Z1=K1. Here, it is noted that a fictitious point,

k ¼ �1, was introduced for convenience so as to represent the symmetry of RiðZÞ with respect to Z ¼ 0. It is

also noted that the stress recovery point in the broken fiber, Z ¼ L, was labeled k ¼ KL, where KL ¼ L=DZ.
The uniform axial deformation in the N th nearest-neighbor fibers was assumed, so that
RN ;k ¼ 1; k ¼ �1; 0; 1; . . . ;K1: ðB:2Þ

Moreover, the symmetry of RiðZÞ with respect to Z ¼ 0 and the vanishing stress concentration at Z ¼ Z1
were used as the boundary conditions. Then,
Ri;�1 ¼ Ri;1; i ¼ 0; 1; . . . ;N ; ðB:3Þ

Ri;K1 ¼ 1; i ¼ 0; 1; . . . ;N : ðB:4Þ

Thus, Eqs. (12) and (13) with R0ðZÞ approximated bilinearly as Eq. (16) were reduced to the simulta-

neous linear equations to determine Ri;k ði ¼ 1; 2; . . . ;N � 1; k ¼ 0; 1; . . . ;K1 � 1Þ. Incidentally, the

bilinear approximation of R0ðZÞ rendered R00
0 in Eq. (12) nonzero at Z ¼ 0 and Z ¼ ZL; the value of R00

0 at

Z ¼ 0 was evaluated to be R00
0;0ð0Þ ¼ 2=½KLðDZÞ2� by use of Eqs. (16), (B.1) and (B.3), while R00

0;KL
ðLÞ ¼

�1=½KLðDZÞ2� by substituting Eq. (16) into Eq. (B.1).
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