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Abstract

In this study, 3D analytical solutions of stress profiles are obtained for the fibers adjacent to a broken fiber in
unidirectional composites with interfacial slip and matrix yielding. To this end, a hexagonal fiber-array model con-
taining a broken fiber is considered in order to derive differential equations based on a shear lag model. By assuming a
bilinear stress profile for the broken fiber, and by introducing an elastoplastic shear modulus of the matrix, it is shown
that all relevant material parameters are consolidated into a nondimensional characteristic length. The governing
differential equations are then analytically solved under the condition that uniform axial deformation prevails in the
second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions are verified by numerically
solving the governing equations more generally using a finite difference method. The analytical solutions are, moreover,
compared with the detailed 3D finite element computations reported recently, leading to the validity of the present
solutions and the effectiveness of the nondimensional characteristic length.
© 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The longitudinal tensile failure of unidirectionally reinforced metal-matrix and polymer-matrix fiber
composites is complex. Initially all fibers are supposed to be intact, although they are brittle. With the
increase of tensile loads, fiber breaks can occur to cause stress concentrations in the adjacent fibers. The
stress concentrations, then, may trigger the progressive failure of fibers, resulting in the final rupture of
composites. The stress concentrations are affected by many factors such as the spacing of fibers, the
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characteristic of fiber/matrix interface, the yielding of matrix, the fiber to matrix ratio of elastic moduli, and
so on. It is, therefore, important to evaluate the effects of these factors on the stress concentrations around
fiber breaks in unidirectional fiber composites.

The shear lag concept introduced by Cox (1952) has been often employed to analyze the stress con-
centrations in unidirectional fiber composites. Such a study was first done by Hedgepeth (1961). He derived
a 2D solution by applying the Fourier transformation to the governing equations of elastic lamina com-
posites with the perfect bonding at fiber/matrix interface. His solution was extended to 3D elastic com-
posites with square and hexagonal fiber arrays by Hedgepeth and Van Dyke (1967). While the 2D solution
by Hedgepeth was shown to be in good agreement with continuum elasticity solutions (Beyerlein et al.,
1996), the 3D solution by HVD was found to overestimate the stress concentrations of finite element
analysis (Nedele and Wisnom, 1994a,b). Landis et al. (1999) improved the HVD model by formulating a
shear lag model based on assumptions consistent with the principle of virtual work and the method of finite
element analysis. Shear lag models have been also used to numerically simulate the progressive failure of
fibers in unidirectional composites (Landis et al., 2000; Okabe et al., 2001, 2002; Ochiai et al., 2003; Goda,
2003).

The HVD model mentioned above is an excellent 3D solving method based on the Fourier transfor-
mation in the space of fiber displacements, though a double integral must be performed numerically. The
HVD model, however, needs to be fairly sophisticated to take into account the slip at fiber/matrix interface
around fiber breaks (Landis and McMeeking, 1999). For polymer-matrix and metal-matrix fiber com-
posites, the slip at fiber/matrix interface usually occurs more significantly at higher applied loads. Matrix
yielding also becomes significant with the increase in applied loads. It is, therefore, worthwhile to develop
new analytical solutions which enable us to simply evaluate the stress concentrations around fiber breaks in
the presence of interfacial slip and matrix yielding.

In the last decade, 2D and 3D finite element computations have been done in several studies to analyze
the stress concentrations caused by a fiber break (Du and McMeeking, 1993; Nedele and Wisnom, 1994a,b;
Goda, 1999; Gonzalez and Llorca, 2001; Xia et al., 2001, 2002). Finite element computations in general
allow us to correctly evaluate the stress concentrations, though they are numerical. Recently, both inter-
facial slip and matrix yielding were minutely taken into account in 3D detailed finite element computations
by Gonzalez and Llorca (2001) and Xia et al. (2001). Such detailed computations can be useful as references
in developing new analytical solutions.

In this paper, by taking account of the slip at fiber/matrix interface as well as the yielding of matrix, 3D
analytical solutions of stress profiles will be derived for the fibers adjacent to a broken fiber. For this
purpose, a shear lag model will be built by supposing the hexagonally arrayed elastic fibers, with an initial
break, embedded in the elastoplastic matrix with a secant shear modulus. The broken fiber will be assumed
to have a bilinear profile of axial normal stress due to the interfacial slip, and the secant shear modulus of
matrix will be represented by assuming the deformation theory of plasticity. Then, after showing that all
material parameters in the basic equations are consolidated into a nondimensional characteristic length,
analytical solutions will be obtained under the condition that uniform axial deformation prevails in the
second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions will be verified
by numerically solving the governing equations more generally using a finite difference method, and by
employing the results of the detailed 3D finite element analysis of Gonzdlez and Llorca (2001) and Xia et al.
(2001).

2. Shear lag model

In this section, a shear lag model is developed to analyze the fiber stress profiles around a fiber break in a
unidirectional composite subject to longitudinal tensile loading. We suppose that elastic fibers with a break
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Fig. 1. Hexagonally arrayed fibers with a broken fiber labeled i = 0.

are hexagonally arrayed and embedded in an elastoplastic matrix, and that slip occurs at the fiber/matrix
interface near the break.

Let the fibers be labeled i = 0,1, 2,. .. so as to form concentric hexagons with the broken fiber located at
the center (Fig. 1). Let us assume that all fibers belonging to the ith hexagon, i.e., the ith nearest-neighbor
fibers, are identically deformed in the axial direction (Nedele and Wisnom, 1994a), and that the fibers,
which have Young’s modulus E;, have an initial residual stress o in the axial direction. The shear lag
concept then gives

du; o;—op .

& B i=0,1,2,..., (1)
where u; and ¢; denote, respectively, the axial displacement and axial normal stress of the ith nearest-
neighbor fibers, and z indicates the axial coordinate with its origin at the fiber break. We further assume
that the fibers have a hexagonal cross section of side length a; and area 4, as shown in Fig. 2 (Suemasu,
1984). Fiber spacing s is then expressed in terms of fiber volume fraction f as follows:

s:\/g(f’]/z—l)af. (2)

Let us ignore the axial normal stress in matrix in conformity with the standard shear lag concept, though
it was taken into account by Ochiai et al. (1991) and Landis and McMeeking (1999). This allows us to
assume that the opposed surfaces of the ith and i + 1th nearest-neighbor fibers, which have been regarded
as the hexagonal bars, have the same magnitude of shear stress, which will be denoted as 7;/,41. The broken

Fig. 2. Approximation of fibers by hexagonal bars of cross sectional area 4y and side length ay.
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fiber and the ith nearest-neighbor fibers then have the following equilibrium equations of forces, respec-
tively:

do
AfEO -+ 6af10/1 = O, (3)
. da,— . . .
iAg . (2i = Dagtizyyi + (2i + Dagtyyin =0, i=1,2,3,... 4)

Here it is noted that the ith nearest-neighbor fibers consist of 6i fibers and have, in total, 6(2i — 1) and
6(2i + 1) faces on which 7;_;,; and 7;/;;; act, respectively.

When the shear stress acting on the broken fiber, 7,1, reaches interfacial slip stress 7, in the vicinity of the
fiber break, the broken fiber has the axial stress profile oy(z) illustrated in Fig. 3. Let us bilinearly
approximate it, as shown by the dashed line in the figure. Then, 6¢(z) and 7o/, (z) have expressions

_ Joorz/l, 0<z<],
GO(Z) - {61?07 léZ, (5)
15, 0<z<],
TO/I(Z){O ’ 1<z (6)
where of° indicates the far field fiber stress related with applied strain &,
or° = Ere™ + oy, (7)
and / denotes the so-called stress recovery length. By use of Egs. (3), (5) and (6), / is expressed as
AfUl?C
[=—". 8
6a;t, (8)

Matrix shear cannot be significant outside the first nearest-neighbor fibers, since |7;/1| < 75/(2i + 1)
according to Egs. (4) and (6). For 7,4, (i =1,2,3,...), therefore, we can assume the following equation
based on the perfect bonding at fiber/matrix interface:

m
Tifi+1 =
/ s

(ui+1 —M,'), = 152535"'a (9)

where G}, indicates an elastoplastic secant shear modulus of matrix. If the fiber break initially exists, the
deformation in matrix cannot be extremely nonproportional even near the fiber break, so that the J,
deformation theory is applicable to matrix plasticity. Then, on the assumption that applied strain ¢ in-
duces considerable plastic strain in the matrix, G, can be represented as follows (see Appendix A):

o, N
Approximation
o; _‘_/
f 7
0 I z

Fig. 3. Bilinear approximation of the stress profile of broken fiber.
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1 3ey -
G~ <+p> , (10)

Gn 0%

where G, indicates the elastic shear rigidity of matrix, and o7 and &3 signify the far field axial stress and
axial plastic strain in matrix, respectively.

Let us introduce nondimensional stresses
(] Ti/i+1

T T;/l 1= "< - (11)
Of - O¢

Zi:

Then, eliminating 7;_,,; and 7;/,+; in Eq. (4) by use of Egs. (3) and (9), differentiating the resulting equation
with respect to z, and subsequently substituting Eq. (1), we have

435, - 3%, 4150 =0, (12)

2i+ 1 2i—1
l—}_ Zi+1—42t+l

b To=0, i=23,4,... (13)

i

Here, () indicates the differentiation with respect to a nondimensional axial coordinate

zZ== 14
A ’ ( )
where
EfAfS 1/2
A= . 15
( Ghar ) 13

Eqgs. (12) and (13), which we will solve analytically in Section 3, are the differential equations on fiber
stresses rather than fiber displacements in contrast to the HVD model. Here it is noted that bilinear
approximation (5) prescribes the following expression for X, which is regarded as a given input in solving
Egs. (12) and (13) for 2;(Z), i =1,2,3,...

Z/L, 0<Z<L

where L is the nondimensional stress recovery length, i.e.,
/
L=—. 17
A (17)
Substituting Egs. (8) and (15) into Eq. (17), and using Eq. (2) as well as 4¢/a? = 3v/3/2, we can show that
G* 1/2 o
L=|——m™ | L 18
[24Ef(f1/2 — 1)} Ts (18)

The boundary conditions to solve Egs. (12) and (13) for X; at Z >0, i =1,2,3,..., can be written as

Jim Z(2) =1, i=1,23,..., (19)
Tyn(0)=0, i=123,... (20)

Since Eq. (4) is rewritten as

A 2i—1
! f 2/+l—]—}f1/ia i:17273)"" (21)

Tyt = =5 2+ 5
/i DitlaAd T 2i 11
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the second boundary condition, Eq. (20), is shown to take the following form by use of Egs. (6), (8), (11),
and (17):

1
6L’
Here it is noted that X' (0) # 0 because 7¢;;(0) # 0 in shear lag modeling.

It is seen from Egs. (12), (13), (19) and (22) that all related material parameters are consolidated into Z;
in other words, L represents the entire influence of material parameters in the shear lag model developed

above. We, therefore, can call L the nondimensional characteristic length or, simply, the characteristic
length.

(0) = — T0)=0, i=234,... (22)

3. Analytical solutions

If the Nth nearest-neighbor fibers constitute an outmost periphery subject to uniform axial deformation,
we have Xy = 1. Now, applying this condition to the second and third nearest-neighbor fibers, respectively,
we derive two analytical solutions, referred to as Solutions I and II.

3.1. Solution I

Let us suppose that the second nearest-neighbor fibers are subject to uniform axial deformation. Then,
since

Z‘2 = 17 (23)
Eq. (12) with X,(Z) approximated bilinearly as Eq. (16) is reduced to
-3, +3=0. (24)

We notice that because of Eq. (16), not only X but also 2 has a discontinuity at Z = L. Hence, let Zil" (2)
and X" (Z) indicate X (Z) in the intervals of 0 < Z <L and L < Z, respectively. Then, a general solution of
Eq. (24) is written as

SNZ) =14 CeV¥ + Ce V¥, 0<Z<L, (25a)

SUZ) =14 Ce¥¥ 4+ Cue V¥, L<2Z, (25b)

where C;, C,, C; and C, are integration constants. These constants can be determined using the boundary
conditions (19) and (22), as well as the continuity conditions of X, and Ty, at Z =L,

ou in’ 1 in ou in ou
IMee) =1, 2 (0)= -7, V() =2"(1), THIL) =T(L). (26)

By using Eq. (21) along with Egs. (6), (8), (11), and (17), the last condition above is rewritten as
in’ 1 out’
(L) + o = 3, (27)
The constants are thus determined as
_e—V3L 2 e Vi D _eV3L _ V3L

Cl=— . =""C°_ (=0 =% _"° 28
"T12v3L T 12V3L ’ ! (28)
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Consequently, Solution I provides the stress concentration factor, SCF, and the positively affected
length, PAL, of the first nearest-neighbor fibers with analytical evaluations:

1 —e V3
PAL In(2eV3: —1)
A~ 23 (30)

It is seen from Eq. (29) that the SCF takes the maximum and minimum values of 1/6 and 0, as L — 0 and
L — oo, respectively. Thus, we can say that the SCF is higher, when the nondimensional stress recovery
length L is shorter.

3.2. Solution I1
If the third nearest-neighbor fibers are supposed to be subject to uniform axial deformation,
2y =1 (31)
Egs. (12) and (13), into which Eq. (16) is substituted, are then reduced to
X +3%2,-32,=0, (32)
) —4X 432 +5=0. (33)

Egs. (32) and (33) are the simultaneous equations to determine X (Z) and X,(Z). It is seen that they have
a particular solution

21(Z2)=2,(2) =1 (34)
and homogeneous equations

V3%, 435, =0, (35)

¥+ 25 —4%, = 0. (36)

Egs. (32) and (33), therefore, have the following general solution, in which the interval is divided into
0<Z<L and L <Z as in Solution I:

4
INZ) =14 D", 0<Z<L, (37a)
n=1
4
IM(Z) =14 Dyye”, L<Z, (37b)
n=1
) 4
I0(Z) =14 Dy, 0<Z<L, (38a)
n=1

4
2M(Z) =14 Dyyke™’, L<Z, (38b)
n=1
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where Dy,D,,... and Dg are integration constants, and 4, and k, (n =1,2,3,4) are obtained from the
characteristic equation of Egs. (35) and (36) as follows:

1/2 1/2
M\ _ 7-V19 B\ _ 7+V19 (39)
Ja 2 T 2 ’

K, = nop=1,2,3,4. (40)

The constants Dy, D», ... and Dg can be determined using the boundary conditions (19) and (22) as well
as the continuity conditions of X; and T/;y1, i =1,2,at Z =1L,

ou ou in’ 1 in’
(o) =1, XPM(co)=1, Xy 0)=-g 20)=0
TNL) = ZPNL), ZP(L) = Z9NL), TL(L) =TH(L), Tijs(L) = T35(L), (41)

where the last two conditions become Eq. (27) and X (L) = X" (L), respectively, because of Eq. (21).
Then, applying the above conditions to Egs. (37a)—(38b), we have a system of equations by which Dy, D>, . ..
and Dg are determined, with the help of a manipulation software Mathematica, as follows:

D — K3€7;”1L . —K3(2 — e’*lL)
b 12(K1 — K3)/11L’ 2T 12(1(31 — K3))»1L’
_ —M3L 2_ —M3L
D3 = e a ) D4 = Kl( © ) )
12(K1 — K3)/L3L 12(K1 — K}))L3L
1 . (42)
D — 0 D — —Kk3(2 — ehl — gL
ST 6 12(K1 — K3)/11L
K1(2 —eBt — ekl
D, =0 Dg =
! ’ 8 12(K1 — K3)/13L
According to Solution II, therefore, the first nearest-neighbor fibers have
(1 — e B0 — 3 05(1 —e At
scp = KAl = e ™) mroh(l Z e ) (43)

6(K1 - K3)/11/13L

This SCF also takes the maximum and minimum values of 1/6 and 0, as L — 0 and L — oo respectively.
The PAL by Solution II is evaluated by numerically solving X2} (Z) = 1.

4. Discussion

Solutions I and II have been obtained by analytically solving Egs. (12) and (13) under the condition that
uniform axial deformation prevails in the second and third nearest-neighbor fibers, respectively. In this
section, first, the validity of this condition is discussed by numerically solving Eqgs. (12) and (13) more
generally; subsequently, Solutions I and II are compared with the detailed 3D finite element computations
done by Gonzalez and Llorca (2001) and Xia et al. (2001).

4.1. Comparison with finite difference analysis

Discretizing Egs. (12) and (13) by use of a finite difference method, we have numerically analyzed the
fiber stress profiles more generally than in Solutions I and II (see Appendix B). The distribution of SCFs
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0.20
A1=001
0.16 L=05
5L=1
oL=10
L 012 A-L=100
7 0.08
0.04
0.004A — ]
1 2 3 4 5

Label of neighbor fibers, i

Fig. 4. SCF of ith nearest-neighbor fibers by finite difference analysis with X5 = 1.

shown in Fig. 4 has been thus obtained on the assumption that uniform axial deformation prevails in the
fiftth nearest-neighbor fibers. The nondimensional characteristic length L, which represents the entire
influence of material parameters, has been changed in this finite difference analysis, so that in the figure, the
SCF of the first nearest-neighbor fibers ranges from zero, the minimum, to 1/6, the maximum. It is seen
from Fig. 4 that the fourth nearest-neighbor fibers always have almost zero SCFs, and that the second and
third nearest-neighbor fibers have SCFs less than 0.015 and 0.005, respectively. This shows the validity of
the assumption used in Solution II that the third nearest-neighbor fibers are subject to uniform axial
deformation.

Fig. 5(a) and (b) compare the two analytical solutions and the finite difference analysis mentioned above
with respect to the SCF and PAL of the first nearest-neighbor fibers. As seen from the figures, Solutions I
and II give nearly the same SCFs and PALs as the finite difference analysis; especially, the SCF and PAL by
Solution II are very close to those by the finite difference analysis. Verification is, thus, made for Solutions I
and II so that they can be useful analytical solutions based on the shear lag model described in Section 2.

4.2. Comparison with finite element analysis

Gonzilez and Llorca (2001) performed 3D finite element analysis to analyze the stress profiles of the
fibers adjacent to a broken fiber in a unidirectional composite Ti-6Al-4V/SiC. In their analysis, elastic
fibers were hexagonally arrayed in an elastic—perfectly plastic matrix, and Coulomb’s friction law was
assumed to allow the interfacial slip near the fiber break. Let us discuss Solutions I and II in the light of
their finite element analysis. The material parameters necessary for applying Solutions I and II to their finite
element analysis have been taken from their paper (Table 1). We thus have L = 2.5 using Eqgs. (10) and (18)
with e = > — (6% — 0mr)/Em. The axial profiles of o; by Solutions I and II with L = 2.5 are compared
with that of the finite element analysis in Fig. 6, where R denotes the radius of fibers. It is seen from the
figure that Solutions II has good agreement with the finite element analysis in the positively affected
interval, 0 <z < PAL, while Solution I gives lower stress in this interval. Thus, the 3D finite element analysis
verifies Solution II.

Solutions I and II have singular points at z/R = 16.5 (Fig. 6), which are due to the bilinear approxi-
mation of g¢(z) shown in Fig. 7. In order to examine the influence of the bilinear approximation, the axial
profile of o determined by the finite element analysis has been input into Egs. (12) and (13) for performing
another finite difference computation. This computation, for which we have assumed X; = 1 as in Solution
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Fig. 5. Comparison of analytical solutions and finite difference analysis with X5 = 1; (a) SCF and (b) PAL of first nearest-neighbor

fibers.
Table 1
Data for comparison with finite element analysis of Gonzalez and Llorca (2001) and Xia et al. (2001)
Gonzélez—Llorca Xia et al.
Applied strain, &> (%) 1.00 0.94
Fiber volume fraction, f 0.35 0.4
Young’s modulus of fibers, E; (GPa) 330 400
Young’s modulus of matrix, £, (GPa) 110 115
Poisson’s ratio of matrix, vy, 0.33 0.3
Residual stress of fibers, a5 (MPa) -876 -540
Residual stress of matrix, o, (MPa) 471 360
Interfacial slip stress, 7, (MPa) 70 58 (1 =10.25)
120 (= 0.5)
193 (x =0.9)
Far field fiber stress, ap° (MPa) 2420 3200
Far field matrix stress, a;x (MPa) 1130 1000

I, has resulted in the profile of ¢, depicted by a chain line in Fig. 6. The bilinear approximation is seen to
exert little influence on the profile of ¢, in the interval of 0 <z < PAL.

Now, we use the results of 3D finite element analysis reported by Xia et al. (2001). They assumed three
values of Coulomb’s friction coefficient u in order to study in detail the effect of interfacial slip near a fiber
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--- FEM
--—-FDM

f

Fiber stress o, / o

Axial position zZ/R

Fig. 6. Stress profiles of first nearest-neighbor fibers by analytical solutions, finite element analysis (Gonzélez and Llorca, 2001), and
finite difference analysis with Z; = 1 and 0y(z) determined by finite element analysis.
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Fig. 7. Stress profile of broken fiber by finite element analysis (Gonzalez and Llorca, 2001), and its bilinear approximation.

break in a unidirectional composite IMI-834 Ti/SCS-6 SiC, which was modeled by hexagonally arrayed
elastic fibers and an elastoplastic matrix with strain hardening. For their analysis, L is evaluated to be
L =4.0,1.9and 1.2 in the three cases of u = 0.25, 0.5 and 0.9, respectively, by use of the data given in Table
1. The SCFs and PALs determined by Xia et al. are plotted as a function of L in Fig. 8(a) and (b),
respectively, to compare their computations with Solutions I and II. The results of Gonzdlez and Llorca are
also plotted in the figures. It is seen that Solutions I and II have fairly good agreement with the 3D finite
element computations. We, therefore, can say that Solutions I and II are effective for estimating the SCF
and PAL of the first nearest-neighbor fibers.

Let us discuss the effects of interfacial slip and matrix yielding by means of the nondimensional char-
acteristic length L. Since L is inversely proportional to 7, in Eq. (18), L ranges widely in the three cases of
w=0.25,0.5and 0.9, as seen in Fig. 8. Consequently, interfacial slip significantly influences the SCFs near a
fiber break. The effect of matrix yielding can be examined by disregarding & in evaluating L. If & is
ignored, Gi, becomes equal to Gy, as seen from Eq. (10). Then, since L o \/G_fn in Eq. (18), and since
G > G, L is overestimated, resulting in underestimating the SCFs. Thus, the nondimensional charac-
teristic length L, which is represented as Eq. (18), is useful for discussing the effects of interfacial slip and
matrix yielding.
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Fig. 8. Comparison of analytical solutions, finite difference analysis with X5 = 1, and finite element analysis (® Xia et al., 2001;
O Gonzalez and Llorca, 2001); (a) SCF and (b) PAL of first nearest-neighbor fibers.

A fiber break was engendered not before but after applying tensile strain ¢ in the finite element analysis
of Gonzilez and Llorca (2001). Such a fiber break causes matrix shear to follow tensile strain, so that
nonproportional deformation occurs in the matrix around the break. This matrix shear can be nearly
elastic, since the development of matrix shear stress is limited by interfacial slip stress g, and since 7y is
usually much smaller than the yield stress of matrix. Nearly elastic behavior in the shear following tensile
strain was observed in combined tension—torsion experiments, for example, by Ohashi et al. (1981). For the
fiber break introduced after applying tensile strain, therefore, it may be appropriate to assume Eq. (9) with
G, replaced by Gy, leading to

Gm :|1/2 O'?O

v g +

Ts

Their finite element analysis then has L = 3.0 instead of L = 2.5. This change in L, however, induces only a
little decrease in the SCF (see Fig. 8), so that the profiles of ¢; by Solutions I and II in Fig. 6 remain valid.
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Incidentally, the discussion above suggests that the SCF near a fiber break induced after tensile loading
is likely to be lower than that near an initially existing fiber break. This tendency was found to be noticeable
in the 3D detailed finite element analysis of an aluminum-matrix composite with the perfect bonding at
fiber/matrix interface (Xia et al., 2002).

5. Concluding remarks

This study was concerned with 3D analytical evaluations of the stress concentrations near a fiber break
in unidirectional composites with interfacial slip and matrix yielding. First, a shear lag model was devel-
oped by considering hexagonally arrayed elastic fibers with an initial break in an elastoplastic matrix. The
broken fiber was assumed to have a bilinear stress profile due to interfacial slip, and the matrix to have a
secant shear modulus to take matrix yielding into account. It was, thus, shown that all relevant material
parameters are consolidated into a nondimensional characteristic length. Then, the governing differential
equations were analytically solved under the condition that uniform axial deformation prevails in the
second and third nearest-neighbor fibers, respectively. The resulting two analytical solutions, Solutions I
and II, were examined by numerically solving the differential equations more generally as well as by using
the results of detailed 3D finite element analysis reported recently. It was thus found that especially
Solution IT has good agreement with these numerical results, and that the nondimensional characteristic
length is effective for evaluating the stress concentrations affected by interfacial slip and matrix yielding.

Let us emphasize the following: In this study, we dealt with the differential equations on fiber stresses
rather than fiber displacements in contrast to the HVD model. In the presence of interfacial sliding, then,
the bilinearly approximated stress profile of the broken fiber functioned as a given input to determining the
stress profiles of adjacent fibers. We thus derived Solutions I and II as well as the nondimensional char-
acteristic length. It will be subjects in our future studies to apply Solutions I and II to estimating the stress
concentrations near multiple fiber breaks and to predicting the tensile strength of composites.

The radial variation of matrix shear stress around a fiber break, which was not considered in this study,
is not negligible if fiber volume fraction is considerably small (Clyne and Withers, 1993; Xia et al., 2002). It
will be also a subject in our future studies to extend Solutions I and II by taking account of the radial
variation of matrix shear stress.
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Appendix A. Elastoplastic secant shear modulus of matrix

The J, deformation theory allows matrix tensile and shear strains, ¢, and 7,,, to be related with matrix
tensile and shear stresses, o, and t,,, as follows:

1 Emp 1 3y
&m = (Em+ 6_m>0m7 'm = (Gm+ P >7m7 (Al)

where E,, and Gy, indicates the tensile and shear rigidities of matrix, and 6, and &y, denote equivalent
matrix stress and equivalent matrix plastic strain, respectively. Since y,, = (u;y1 — u;)/s, Eq. (A.1), provides
the secant modulus in Eq. (9), G;,, with an expression
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-1
1 3
G ~ (G—+%> . (A2)

Let us remember that matrix shear cannot be significant outside the first nearest-neighbor fibers, and that
G;, applies to such shear. Then, on the assumption that applied loads induce considerable axial stress and

axial plastic strain in the matrix, we may have a, = (62, + 372)"% ~ 62 and &y, = (8mp T Vp/ 3N e
outside the first nearest-neighbor fibers, so that G, becomes
1 3\
G ~|—+—2) | A3
n (o) (A3)

where a7 and & signify the axial normal stress and axial plastic strain in the far field matrix, respectively.
Appendix B. Finite difference method

In order to solve Egs. (12) and (13) more generally than Solutions I and II, we employed the central finite
difference approximation of X7,
"y tk 1 — 2Zlk+zlk+1
" (AZ)’
where X, (k=-1,0,1,...,K;,...,K,) indicates the value of Z; at the kth point in the interval 0 < Z < Z,,
divided equally into K., segments with a length of AZ = Z, /K. Here, it is noted that a fictitious point,
k = —1, was introduced for convenience so as to represent the symmetry of X;(Z) with respect to Z = 0. It is

also noted that the stress recovery point in the broken fiber, Z = L, was labeled £ = K;, where K; = L/AZ.
The uniform axial deformation in the Nth nearest-neighbor fibers was assumed, so that

Svi=1, k=-101,... K. (B.2)

Moreover, the symmetry of X;(Z) with respect to Z = 0 and the vanishing stress concentration at Z = Z,
were used as the boundary conditions. Then,

Z,‘ﬂ,]:Zi‘l, i=0,1,...,N, (B3)

. k=0,1,2,... K. — 1, (B.1)

2k, =1, i=0,1,...,N. (B.4)

Thus, Egs. (12) and (13) with Xy(Z) approximated bilinearly as Eq. (16) were reduced to the simulta-
neous linear equations to determine X;; (i =1,2,. —-1; k=0,1,...,K, — 1). Incidentally, the
bilinear approximation of Xy(Z) rendered 2| in Eq (12) nonzero at Z = () and Z = Zy; the value of X at
Z =0 was evaluated to be X(,(0) = 2/[KL(AZ) | by use of Egs. (16), (B.1) and (B.3), while Xj ,(L) =
—1/[KL(AZ) ] by substituting Eq. (16) into Eq. (B.1). o
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